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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is currently 
the third-leading cause of cancer mortality in the United 
States (1) and is projected to become the second-leading 
cause in the next decade (2). PDAC has an extremely 
poor prognosis, with 1- and 5-year survival rates of only 
18% and 7%, respectively (3), primarily due to late-
stage diagnosis, its aggressive nature regarding early local 

invasion and metastasis, and high levels of resistance to 
conventional chemotherapies and radiotherapies. The 
increasing incidence and poor prognosis for PDAC patients 
demonstrate the unmet need for both earlier diagnosis and 
effective treatment strategies.

The current clinical standard of care for PDAC patients 
revolves around surgical resection and/or cytotoxic 
chemotherapy regimens (4). Surgical resection represents the 
only curative treatment, especially in cases where PDAC has 
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no arterial and/or limited venous contact with the vasculature, 
with only 10–15% of patients meeting these criteria (5). In 
patients with advanced disease with metastases or in cases 
where PDAC is recurring, cytotoxic chemotherapy regimens 
are the standard treatment, with overall survival (OS) in the 
range of weeks to a few months (4). Single-agent gemcitabine 
was approved in 1997, and it remained the standard of care 
for PDAC for more than two decades, despite having a dismal 
clinical response with a median survival of approximately 6 
months (6). Erlotinib, an epidermal growth factor receptor 
(EGFR) inhibitor, in combination with gemcitabine, improved 
OS of PDAC patients by 10 days compared with gemcitabine 
alone and received FDA approval in 2005 (7). In 2011, a 
more intense chemotherapeutic regimen, FOLFIRINOX 
(oxaliplatin, irinotecan, and fluorouracil/leucovorin), was 
approved for PDAC treatment, with improved survival of 
approximately 11 months (8). However, as expected, this 
regimen has higher toxicity, so only patients with high-
performance status are eligible to receive this treatment. 
In 2013, nab-paclitaxel (an albumin-bound formulation of 
paclitaxel) in combination with gemcitabine (NPT + Gem) 
demonstrated median survival of 8.5 months, which led to 
FDA approval of this combination as a first-line treatment for 
PDAC patients (9) (Table 1).

A challenging aspect in improving the treatment of 
PDAC is the lack of accurate predictive biomarkers that 
can be used to evaluate response to chemotherapies and 
targeted therapies. In addition, most of the time, promising 
results on preclinical animal models do not translate to 
clinical trials (4). Patient-derived xenograft, organoid, and 
genetically engineered preclinical models that enable a 
better understanding of the disease progression at molecular 
levels may enable the improved translation of therapies 
(4,10). Genomic testing to determine specific genetic PDAC 
mutations might also help in tailoring targeted treatment 
regimens for improved efficacy and OS (4).

Targeted therapies that directly block specific oncogenic 

pathways in PDAC progression have thus far played a limited 
role in the treatment of this disease. The consensus statement 
from the National Cancer Institute (NCI) indicated the need 
for targeted agents, predictive biomarkers, and improved 
preclinical models for PDAC (11). Additional molecular 
pathways and genetic mutations of PDAC can be utilized for 
targeted or precision therapies (12,13). Targeting oncogenes 
(such as KRAS), reactivating inactivated tumor suppressors 
(such as p53, CDKN4, p16, BRCA1/2 and SMAD4), and 
exploiting DNA repair pathways and the immune system 
might be potential treatment options for PDAC (5,14). 
Aberrant genes and signaling pathways for microRNAs 
(miRNAs) as biomarkers or therapeutic targets also have 
potential in PDAC (15). In this review, we will discuss 
potential oncogenic molecular pathways involved in PDAC 
progression and targeted therapies to block these pathways 
for improved clinical PDAC therapy.

Oncogenic pathways involved in PDAC 
progression

The growth and progression of PDAC involve many 
different, interconnected signaling pathways (Figure 1). 
The KRAS signaling pathway is predominant in PDAC, 
as oncogenic mutations of the KRAS gene facilitate many 
downstream pathways promoting cancer development and 
metastasis and impact metabolism (16). Once mutated, 
KRAS remains bound to GTP, leading to greater PDAC 
growth (16). Two well-known pathways activated by 
oncogenic KRAS include the RAF-MEK-ERK (MAPK) 
pathway and the PI3K-AKT-mTOR pathway, both 
promoting tumor cell proliferation, division, and survival 
as well as angiogenesis and invasion/migration (Figure 1).  
KRAS can be understood as a central mediating point 
regarding the network of oncogenic signaling in PDAC, as 
KRAS is implicated with many other downstream proteins 
involved in PDAC initiation, maintenance and progression, 

Table 1 Timeline of FDA approved treatments for advanced pancreatic cancer

Cytotoxic chemotherapy Year approved Median survival Notes References

Gemcitabine 1997 6.1 months A nucleoside analog Burris et al. (6)

Gemcitabine plus erlotinib 2005 6.1 months plus 10 days Erlotinib: an EGFR inhibitor Moore et al. (7)

FOLFIRINOX 2011 11.1 months Fluorouracil/leucovorin, irinotecan, 
oxaliplatin

Conroy et al. (8)

Nab-paclitaxel plus gemcitabine 2013 8.5 months Nab-paclitaxel: albumin-bound 
paclitaxel

Von Hoff et al. (9)
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and growth of the characteristic PDAC stroma (17).  
Activation of hedgehog signaling pathways, initiated 
by oncogenic KRAS activity, causes greater cancer cell 
proliferation and invasive activity and promotes cancer 
cell survival through increased resistance to apoptotic 
mechanisms (18). Oncogenic KRAS signaling also regulates 
Wnt protein signaling, as inhibition of Wnt/Ca2+ activity 
is conducive towards supporting PDAC tumor growth and 
development (19). Another pathway affected by oncogenic 
KRAS signaling involves Ral guanine nucleotide exchange 
factors (RalGEFs) (20) (Figure 1).

Other related pathways that intersect with oncogenic 
KRAS signaling are as follows: EGFR signaling pathways 
are pertinent in PDAC progression, as EGFR proteins 
are overexpressed in most PDAC cases (21). Additionally, 
EGFR-mediated signaling can also activate the MAPK and 
the PI3K-AKT signaling pathways (21). Higher activity 
of insulin-like growth factor-1 (IGF-1) and its receptor  
(IGF-1R) has also been shown to play a role in PDAC 
progression (22) (Figure 1). EGFR pathways also intersect 
with IGF receptors, as such intersectionality between 
these signaling pathways is conducive to greater growth 
and development of PDAC. Accordingly, mechanisms 
of resistance to pathway inhibitors emerge across these 
signaling pathways (22). Also, vascular endothelial growth 

factor (VEGF) and its receptor 2 (VEGFR2) signaling are 
involved in activating angiogenesis and promoting vascular 
growth, which in turn facilitates PDAC progression (23). 
The TGF-β signaling in PDAC can also promote disease 
progression by activating Ras and consequently ERK 
protein signaling facilitating angiogenesis, metastasis, and 
suppression of immune cells as part of the pancreatic tumor 
microenvironment (13) (Figure 1). However, other TGF-β 
signaling pathways, specifically SMAD protein-dependent 
pathways, have tumor-suppressive functions (13). Regardless, 
such signaling is prevented in many cases of PDAC, as there 
are mutations that inactivate SMAD-dependent TGF-β 
signaling, which in turn also promotes further progression 
of this disease (13). Some oncogenic pathways are more 
directly implicated in the PDAC microenvironment. Met 
(hepatocyte growth factor receptor) signaling regulates 
the relationship between pancreatic stellate cells (PSCs) of 
the tumor stroma and PDAC epithelial cells, promoting 
PDAC growth and metastasis (24). Moreover, integrins 
and their related signaling pathways also function within 
the PDAC microenvironment, as they facilitate PSCs 
transitioning into different kinds of cancer-associated 
fibroblasts (CAFs) through differentiation as well as 
regulate paracrine signaling effects mediated within the 
tumor microenvironment promoting greater PDAC growth 

Figure 1 Oncogenic signaling pathways involved in pancreatic cancer progression.
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and progression (25).

Targeted therapies investigated for PDAC

Antiangiogenic therapies

Angiogenesis plays an integral role in promoting tumor 
growth and metastasis in many solid tumors (26). Although 
many types of cancers present with hypervascularity, 
corresponding to angiogenic processes, PDAC, in contrast, 
is characterized by its hypovascular nature, having fewer 
blood vessels associated with its tumors (27). Nonetheless, 
pro-angiogenic processes and factors are still important in 
the growth and development of PDAC, as these tumors 
often have multiple areas consisting of high levels of 
vascular, microvessel networks (27). Therefore, targeted 
therapies to block angiogenesis are important to consider 
for potential PDAC treatment modalities (Figure 2).

Antiangiogenic therapies for PDAC have focused 
on targeting VEGF signaling, as it facilitates tumor 
angiogenesis, creating greater tumor blood vessel density (28). 
Two types of antiangiogenic agents studied in PDAC are (I) 
monoclonal antibodies, such as bevacizumab (anti-VEGF 
antibody) and ramucirumab (anti-VEGFR2 antibody), 
and (II) small-molecule tyrosine kinase inhibitors (TKIs), 
including sunitinib, sorafenib, imatinib, and axitinib as early-
generation TKIs, as well as newer therapeutic agents, such 
as nintedanib, which have shown greater promise with better 
safety profile.

Preclinical studies involving VEGF-targeted inhibition 
presented promising results regarding antitumor activity (27). 
However, such trends did not translate in clinical studies 
involving gemcitabine in combination with bevacizumab or 
axitinib, as there was no significant OS difference observed 
(29,30). Therefore, it is imperative to extend the scope of 
antiangiogenic drugs considered beyond targeting only 
VEGF to inhibit angiogenesis more effectively (28).

Sunitinib, a multikinase inhibitor targeting VEGFR, 
platelet-derived growth factor receptors (PDGFR), colony-

stimulating factor receptor (CSFR) and the stem cell factor 
receptor (c-KIT), demonstrated effectiveness in blocking 
angiogenesis in the treatment of pancreatic neuroendocrine 
tumors, showing improvements in OS (31). However, 
sunitinib’s efficacy has shown to be only temporary, as 
mechanisms of resistance have developed against this 
treatment with tumor hypoxia (32). In PDAC murine 
xenografts, sunitinib demonstrated antitumor activity as 
monotherapy and in combination with gemcitabine (33). 
Sorafenib, another multitarget TKI that blocks B-Raf, 
VEGFR, PDGFR, c-KIT and RET, demonstrated promising 
results in combination with gemcitabine in preclinical 
studies (34), but this combination was inactive in a clinical 
study (35). Nintedanib, a triple angiokinase inhibitor that 
targets VEGFR, PDGFR and FGFR, has shown significant 
antitumor response in preclinical models of several solid 
tumors (36). Treatment of PDAC tumors in xenograft 
models with nintedanib monotherapy or in combination with 
gemcitabine demonstrated significant anti-tumor activity (37).  
Nintedanib is currently under clinical investigation in 
combination with nab-paclitaxel plus gemcitabine for 
advanced PDAC (38).

More broadly, although antiangiogenic therapies 
presented some potential in preclinical contexts, there 
is limited evidence of their effectiveness in clinical 
studies of PDAC. The factors of drug resistance such 
as tumor hypoxia as well as alternative mechanisms of 
angiogenesis further complicate utilizing antiangiogenic 
therapies for this disease. Vascular mimicry presents an 
alternative mechanism of angiogenesis, as this allows for 
the building of compensatory vascular networks that evade 
antiangiogenic therapies (27,32). Antiangiogenic therapies 
can reduce the effectiveness of other treatment modalities, 
as they have been shown to compromise blood vessel 
structures, diminishing the efficacy of drug delivery to 
tumors (27,28). An important consideration for improving 
antiangiogenic therapies in personal treatment contexts is 
a better understanding of biomarkers, as these can provide 

Figure 2 Broad classification of targeted therapies investigated in pancreatic cancer.

Targeted PDAC Therapy 

Angiogenesis 
Inhibitors 

DNA Repair 
Inhibitors

KRAS Pathway 
Inhibitors

Anti-Stromal 
Therapy



Digestive Medicine Research, 2021 Page 5 of 16

© Digestive Medicine Research. All rights reserved. Dig Med Res 2021;4:32 | http://dx.doi.org/10.21037/dmr-21-21

information regarding which patients could have better 
treatment outcomes with these therapies (27,32).

DNA repair targeted therapy

Although cancer cells have inherently damaged DNA, they 
can block and repair DNA damage induced by therapeutic 
agents. Accordingly, DNA repair targeted therapy in 
cancerous cells is directed towards those repair mechanisms 
specifically involved in fixing DNA damage caused by 
anticancer drugs. Targeting DNA repair processes presents 
a promising consideration in targeted therapies for cancers, 
including PDAC (39) (Figure 2).

Gemcitabine is not only strongly implicated in discerning 
new standards of combination chemotherapy modalities in 
PDAC, but it is also recognized as a DNA damaging agent. 
Therefore, consideration of DNA damage repair inhibitors 
is important, as such agents could complement the effects 
of gemcitabine, allowing such DNA damage to remain 
in PDAC cells, eventually leading to apoptosis (40). Two 
ways of preventing the repair of such DNA damage are (I) 
blocking the function of cell cycle regulators to allow cancer 
cells with DNA damage to continue through the cell cycle 
process and (II) stopping the process of DNA repair directly. 
In PDAC, cell cycle inhibitors such as CHK1, WEE1, and 
ATR kinase inhibitors have shown varying levels of potential 
when tested in combination with gemcitabine. CHK1 
inhibitors have presented as relatively ineffective (41), 
while WEE1 and ATR kinase inhibitors have shown some 
promising results in inhibiting tumor growth in xenograft 
models, but such research is still in its early phases (42-44).  
Relative to these cell cycle inhibitors, poly adenosine 
diphosphate-ribose polymerase (PARP) inhibitors target 
PARP proteins, which have DNA repair as one of their 
cellular functions. BRCA proteins play an important role 
in DNA damage repair (40). BRCA1/2 gene mutations are 
commonly implicated in cases of familial PDAC, which 
make up 5–17% of PDAC cases (45). When BRCA1/2 
genes are mutated, homology-directed DNA repairs are 
compromised, and PARP acts as a substitute mechanism to 
maintain genomic integrity; consequently, the cells become 
very sensitive to PARP inhibitors. Olaparib (a PARP 
inhibitor), both alone and in combination with gemcitabine, 
has shown effectiveness in improving OS in PDAC patients 
having the BRCA mutation (46,47). Olaparib has also shown 
promising results in combination with bevacizumab in 
other cancers, whether the BRCA mutation was present or 
not, presenting possible relevance of this combination as a 

potential treatment in PDAC (48).
Another area of relevance of DNA damage repair 

inhibitors in developing therapies for PDAC involves its 
combination with radiotherapy. Utilization of radiation/
chemoradiation has demonstrated potential for improving 
patient survival outcomes with regards to resectable as 
well as unresectable PDAC cases (49). Administration of 
chemoradiation preceding surgical resection has improved 
OS in patients with PDAC, although such survival benefit 
has been shown in limited contexts with smaller-scale studies 
(50-53). Given that radiotherapy results in DNA damage 
in cancer cells, utilizing DNA damage repair inhibitors to 
prevent these cells from repairing this damage can facilitate 
greater radiosensitization, making these cancer cells more 
vulnerable to radiotherapy (54,55). In PDAC xenograft 
models, several DNA damage repair inhibitors such as CHK1 
inhibitors (AZD7762, MKK8776), ATR inhibitor (VE-822), 
PARP inhibitors (olaparib, veliparib) and WEE1 inhibitor 
(AZD1175), demonstrated sensitization effects to radiation/
chemoradiation (44,56-60). The combination approach of 
radiotherapy with DNA damage repair inhibitors is in the 
early phases of PDAC clinical studies.

KRAS pathway inhibitors

Activating KRAS mutation is the most frequent mutation 
(>95%) in PDAC, and it is associated with the initiation, 
progression, and maintenance of PDAC (16). KRAS is 
a small GTPase that cycles between active GTP-bound 
and inactive GDP-bound forms. KRAS mutation occurs 
at three primary locations: glycine-12 (G12), glycine-13 
(G13), or glutamine-61 (Q61). Activating KRAS mutation 
results in many oncogenic signaling pathways, including 
the MAPK pathway and the PI3K-AKT-mTOR pathway. 
PDAC is particularly addicted to KRAS mutation, further 
emphasizing the importance of KRAS and its related 
pathways as potential targets in this disease.

Therapies that directly target KRAS have been 
challenging to study and evaluate, one reason being the 
structure of the KRAS protein, which has a smooth surface, 
which in turn is not complimentary towards inhibitors 
directly binding to its surface (61). Other challenges 
associated with direct targeting of the KRAS protein 
include its similarity to a large number of other proteins 
involved with GDP/GTP binding, which makes specific 
targeting of KRAS more difficult, as well as the high 
affinity of KRAS for GDP/GTP and the high cellular 
concentrations of GDP/GTP, which diminish the efficacy 
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of a potential direct KRAS inhibitor (62). Consequently, 
research involving KRAS pathway inhibitors has focused 
on targeting downstream effector pathways, such as MAPK 
and PI3K-AKT pathways (63).

Regarding the MAPK pathway, MEK inhibitors 
have been more widely evaluated relative to RAF and 
ERK inhibitors, as MEK kinases have critical functions 
in regulating and promoting cancer cell proliferation 
and tumorigenic growth (64). RAF inhibitors, such 
as vemurafenib and dabrafenib, proved challenging 
to implement in cancer treatment modalities because 
RAF inhibition has been demonstrated to be overcome 
by developed resistive mechanisms and/or paradoxical 
activation of downstream kinases by alternative mechanisms 
(65,66). Research involving ERK inhibitors has been 
more limited in scope, although a study reported 
promising antitumor effects of these inhibitors along with 
inhibition of autophagy in pancreatic cancer preclinical  
models (67). MEK inhibitors, specifically trametinib, 
have shown potential in PDAC. In a phase II clinical trial, 
trametinib combination with gemcitabine presented a 
1.7-month improvement in OS compared with gemcitabine 
monotherapy in PDAC patients (68). In a preclinical PDAC 
study, trametinib demonstrated additive antitumor response 
in combination with nab-paclitaxel plus gemcitabine 
chemotherapy (69).

PI3K-AKT signaling is greatly implicated in the 
development and survival of cancerous cells, so this pathway 
presents a pertinent target for cancer treatments (70,71). 
PI3K inhibitors, such as BKM120 and BAY 80-6946, 
have been evaluated in solid tumors in clinical contexts 
(72,73). Additionally, MK-2206, an AKT inhibitor, has 
demonstrated pertinence regarding PDAC targeted 
therapies (74,75). AKT inhibition in combination with 
gemcitabine has shown promising outcomes in preclinical 
PDAC models (76). Recently, Awasthi et al. demonstrated 
that the standard chemotherapy response of PDAC can 
be enhanced through dual targeting of PI3K and MAPK 
signaling by MK-2206 and trametinib, respectively (77). 
Thus, PI3K-AKT pathway inhibition has the potential to be 
complementary towards enhancing other forms of PDAC 
targeted therapies (70).

An alternate approach to target the KRAS pathway uses 
kinases and activators upstream of the KRAS protein. The 
Met kinase activates KRAS and its subsequent downstream 
pathways, and it is often overexpressed in many cancers 
including PDAC (78,79). Onartuzumab, a Met inhibitor, 
demonstrated potential as an inhibitor of the KRAS 

pathway; however, further research is needed to establish 
Met inhibitors as being therapeutically effective in this 
disease (80).

Anti-stromal therapies

The PDAC microenvironment, the desmoplastic stroma, is 
composed of a heterogeneous variety of cell types, such as 
PSCs, fibroblasts, endothelial cells, immune cells, as well as 
non-cellular extracellular matrix (ECM) components such 
as collagen and growth factors (81). PDAC cells release 
several factors that stimulate the stroma, and stromal 
cells release several mitogenic/oncogenic substances 
that stimulate PDAC progression, invasion, and therapy 
resistance (82). This tumor microenvironment not only 
creates a hypoxic environment that is detrimental to 
chemotherapy delivery and radiotherapy but also releases 
growth factors and cytokines which further the growth of 
the desmoplastic stroma (81,82). Further, PDAC epithelial 
and stromal compartments interact to potentiate tumor 
aggressiveness. Thus, the therapeutic potential of targeting 
this dense desmoplastic stroma was evaluated in advancing 
PDAC therapy (81).

The Sonic hedgehog (Shh) pathway induces PSCs to 
become activated, which promotes greater growth of the 
stroma microenvironment. A preclinical study using the Shh 
pathway inhibitor saridegib (IPI-926) in combination with 
gemcitabine demonstrated promising results (83). Although 
phase 1 studies showed that this combination was somewhat 
tolerable, issues regarding toxicity arose in later clinical 
trials as its immense effects on depleting the stroma did not 
improve OS in long-term considerations (84,85). Given 
the complexity of the desmoplastic stroma, although it 
promotes PDAC growth in many ways, it also has functions 
that limit PDAC progression, such as restraining tumor 
growth. Therefore, an inordinate focus on the destruction 
of the desmoplastic stroma, using the Shh pathway 
inhibitor, can have repercussions with complete removal of 
the stroma, which could facilitate a more aggressive growth 
of this disease, thus decreasing OS. Therefore, future 
studies on anti-stromal therapies shifted their focus away 
from completely depleting the desmoplastic stroma (81).

Another pertinent consideration regarding anti-
stromal targeted therapies focused on hyaluronan, a 
glycosaminoglycan present in the desmoplastic stroma 
ECM. Hyaluronan levels are much higher in PDAC 
tissues relative to healthy pancreatic tissues, and it has been 
correlated with aggressive tumor growth and therefore 
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reduced OS (86). Depletion of hyaluronan with pegylated 
hyaluronidase (PEGPH20) showed some promise in 
PDAC, specifically in patients with higher levels of 
hyaluronan (87). Unfortunately, a recent randomized phase 
III trial of PEGPH20 plus NPT + Gem did not show any 
improvement in OS or progression-free survival (PFS) of 
PDAC patients (88).

Future prospects of targeted therapies for 
pancreatic cancer

Direct KRAS inhibitors

Based on the critical importance of the KRAS pathway 
in PDAC as well as difficulties associated with its direct 
and downstream targeting, there are ongoing efforts to 
have a direct inhibitor of this pathway (Figure 3). There 
are different variations of the oncogenic KRAS mutation, 
which differ in prevalence depending on the cancer type 
considered. For instance, G12D, G12V, and G12R KRAS 
mutation isoforms are more common in PDAC, whereas 
the G12C mutation isoform is more common in NSCLC 
but extremely rare in PDAC (16). Consequently, the 
drugs AMG-510 and MRTX-849 that are focused towards 
targeting the G12C KRAS mutation isoform are less 
applicable as direct KRAS inhibitors in PDAC (89,90). 
Recently, pan-KRAS inhibitors, such as BI-1701963 and 
BAY-293, which address all KRAS mutation isoforms more 
broadly, present greater applicability in PDAC. BI-1701963 
and BAY-293 are inhibitors of the protein son of sevenless 
homolog 1 (SOS1), which activates KRAS, inclusive of its 
multiple oncogenic mutation isoforms. These direct KRAS 
inhibitors are emerging and receiving greater attention for 
clinical PDAC therapy.

Another approach utilizing direct KRAS inhibitors 
involves disruption of the localization of KRAS proteins 
to plasma membranes. One example of this approach is 

farnesyltransferase inhibitors (FTIs), as farnesyltransferase 
causes post-translational modification of KRAS that 
assists with its association with the plasma membrane and 
interactions with other activating proteins (91). In a phase 
III study, tipifarnib, an FTI, when evaluated in combination 
with gemcitabine, did not demonstrate any significant 
benefit (92). One possible reason for this ineffectiveness 
could be the presence of additional compensating lipid 
modification mechanisms, allowing for KRAS localization on 
plasma membranes regardless of FTIs (93). However, FTIs 
could present alternative treatment benefits with regards to 
inhibiting cytokine secretion which promotes inflammation 
and supports  the tumor microenvironment  (63) .  
Other inhibitors that have been evaluated regarding the 
association of KRAS to the plasma membrane are deltarasin 
and salirasib. The protein phosphodiesterase 6 delta (PDEδ) 
helps the KRAS protein localize at the plasma membrane, 
so deltarasin, an inhibitor that blocks this interaction, was 
evaluated and showed promise in preclinical studies (94,95). 
Additionally, studies involving gemcitabine in combination 
with salirasib, which displaces Ras proteins from plasma 
membranes, have shown promising results, both in 
preclinical and clinical contexts (96). Therefore, additional 
research with the combination of gemcitabine with salirasib 
is needed to better assess the potential efficacy of salirasib as 
an inhibitor of KRAS.

Novel anti-stromal therapies

Based on the detrimental effects of initial anti-stromal 
therapies in PDAC, novel approaches have shifted 
their focus towards modulating the PDAC stroma in a 
more conservative, balanced manner (81). Additionally, 
exploring novel anti-stromal therapies is also imperative 
due to toxicities associated with initial anti-stromal 
therapies, including nausea and vomiting, muscle spasms, 
fatigue, and impaired or altered sense of taste (84,97).

Figure 3 Future prospects of targeted therapies in the treatment of pancreatic cancer.
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Activated PSCs play an integral role in the PDAC stroma 
construction, as they are implicated in the deposition of 
ECM proteins such as collagen, laminin, fibronectin, and 
elastins, all of which bolster and contribute to the fibrotic 
stroma (81,98). Thus, therapeutic inhibition of PSCs 
activation has the potential to improve PDAC therapy. A 
novel approach involves analogs of fat-soluble vitamins, 
vitamins A and D. One characteristic feature of activated 
PSCs is their lack of cytoplasmic retinol containing lipid 
droplets. Loss of these lipid droplets enhances the activity 
of PSCs, which is further amplified as limited, impeded 
functionality of the pancreas and its secretions also 
diminishes levels of vitamins A and D. Vitamin A analogs 
have demonstrated reduced activity of PSCs, causing 
decreased PDAC cell proliferation (99). Vitamin D analogs 
have demonstrated high binding affinities to PSCs, which 
have many vitamin D receptors. Recent studies have shown 
the antitumor benefits of calcipotriol, a safe vitamin D 
analog, in combination with gemcitabine, with modulation 
of the PDAC stroma to be less reactive and more passive. 
Such reprogramming of the PDAC stroma has shown 
improved OS in mice with improvement in the delivery of 
chemotherapeutic drugs (100).

Recently, miRNAs are receiving more attention as 
novel anti-stromal therapies. A miRNA with potential 
relevance for PDAC is miR-21, which promotes fibrosis. 
As elevated amounts of miR-21 are implicated in PDAC 
tumors, they present potential diagnostic and therapeutic 
opportunities in this disease (101). Another miRNA, miR-
29, has been implicated in PDAC. The loss of miR-29 has 
been reported in activated PSCs and fibroblasts causing 
increased ECM deposition and further stromal growth. 
Therefore, overexpression of miR-29 in activated PSCs 
has the potential to reduce stromal density and improve 
PDAC therapy (98). As miRNAs have shown promise 
in regulating fibrotic proteins and stroma to diminish 
tumor progression with little to no toxicity, miRNA-based 
targeted therapies have great potential for utilization in 
PDAC therapy.

Novel small-molecule inhibitors

Since many different signaling pathways are implicated 
in the progression of PDAC, consideration of agents that 
can inhibit multiple oncogenic pathways simultaneously 
represents a valuable approach to future targeted therapies. 
Evaluation of multikinase inhibitors for potential use in 
such therapies has demonstrated varying levels of efficacy.

MK2461, a multikinase inhibitor, has demonstrated 
efficacy in preclinical studies for its interference with 
interactions between PSCs and PDAC cells (102). MK2461 
targets MET and PDGFRβ, both of which are present in 
PSCs and facilitate their interactions with other PDAC cells. 
Higher levels of MET and PDGFRβ in PSCs are implicated 
in increased PDAC progression (102). Since excessively 
high levels of MET expression indicate greater invasiveness 
and aggressiveness in PDAC, utilization of MK2461 has 
immense potential in future clinical studies, as this drug has 
shown attenuation of pancreatic tumor progression without 
significant toxicity effects (102). Evaluation of niraparib, a 
PARP inhibitor, has potential in PDAC patients where the 
disease possesses cellular difficulties regarding responsiveness 
in repairing DNA damage (103). CPI-613, a metabolic 
inhibitor, focuses on alterations of enzymatic activity involved 
in mitochondrial functions in tumor cells, presenting 
potential as a therapeutic agent because of its specific 
targeting of mitochondrial activity in tumor cells. CPI-613 
is being evaluated in combination with FOLFIRINOX in 
PDAC patients as well, with important consideration placed 
towards the evaluation of a tolerable dose of CPI-613 (104). 
BEY-1107, a cyclin-dependent kinase (CDK) inhibitor, is 
currently under clinical investigation regarding its safety and 
efficacy in PDAC patients, both as a single agent as well as 
in combination with gemcitabine (105,106). Galunisertib is 
a therapeutic agent presenting strong selectivity and efficacy 
towards inhibition of TGFβ receptor 1 (TGFβR1). TGFβ is 
involved in tumorigenic growth and metastatic progression 
through multiple mechanisms such as cellular proliferation, 
angiogenesis, and stromal management, so TGFβ pathways 
present promising therapeutic targets (107). Galunisertib is 
currently being evaluated as monotherapy and in combination 
with gemcitabine in PDAC patients, presenting positive 
potential with only slight additional toxicity effects when 
administered concurrently with gemcitabine (108). Apatinib, 
a novel agent that inhibits VEGFR2, PDGFRβ and c-kit, 
is very promising in PDAC, as VEGFR2 plays a significant 
role in angiogenesis and metastasis in this disease (109-111). 
In addition to reducing tumor angiogenesis, apatinib also 
decreases tumor cell proliferation and induces apoptosis in 
PDAC cells (112). Also, apatinib is particularly appealing 
relative to previously considered antiangiogenic approaches, 
as it presents a greater capability towards improving OS 
in cancer patients (110). As a potential targeted agent for 
use in PDAC treatment modalities, further research and 
clarification are needed with regards to apatinib’s applicability 
to PDAC patients.
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Nanoparticle formulated targeted therapies

As the desmoplastic PDAC stroma presents a barrier to 
therapeutic agents, utilization of nanoparticles can lead 
to enhanced permeability, retention, and accumulation of 
anti-cancer drugs within tumors, conducive to increasing 
their efficacy (113). Nanoparticles have been used for 
improved delivery of chemotherapy drugs, combination 
treatments with multiple drugs, and small interfering RNA 
(siRNA)-derived therapeutics. siRNAs present potential 
for targeted treatment, as they safely facilitate suppression 
of gene expression, such as the KRAS gene, implicated 
in PDAC progression while not directly interfering with 
DNA. Nanoparticles can enable the delivery of siRNAs as 
therapeutic agents to PDAC cells and tumors.

Nanoparticle formulated targeted drugs have been 
shown to improve the efficacy of chemotherapeutic drugs, 
such as gemcitabine (114). EGFR-targeted nanoparticles 
in combination with gemcitabine improved treatment 
specificity and efficacy by delivering drugs near tumors, 
thereby improving cytotoxicity effects of gemcitabine 
at lower concentrations (115). Overall, nanoparticle-
formulated targeted therapies present a direct mechanism 
that can improve not only the delivery of chemotherapeutic 
drugs to tumors but also their effectiveness in reducing 
tumor cell proliferation and tumor growth. Prabhuraj et 
al. demonstrated that administration of curcumin with 
gemcitabine via mesoporous silica nanoparticles (MSN) 
has additive antitumor effects in xenograft models and 
greater cytotoxicity in facilitating greater cell death among 
PDAC cells. As the application of curcumin presents 
enhanced effects of gemcitabine on PDAC, this also shows 
how the use of nanoparticles can complement existing 
chemotherapeutic agents (116).

Another combination therapy using nanoparticles, a Shh 
inhibitor, cyclopamine (CPA), and a chemotherapy drug 
paclitaxel (PTX) with a polymeric micelle formulation 
(M-CPA/PTX), has demonstrated improved antitumor 
response in PDAC preclinical studies by simultaneous 
remodeling of stroma by CPA and cytotoxic effects of 
PTX on tumor cells (117). These combination therapeutic 
strategies involving nanoparticles have a high potential for 
future PDAC therapy.

Immunotherapies

Immunotherapy approaches have faced significant challenges 
as potential targeted therapies for PDAC. Prominent stroma 

in the PDAC microenvironment presents a significant 
barrier to immunotherapies in multiple ways (118). The 
heterogeneous composition of the stroma with multiple 
cell types such as immunosuppressive myeloid cells and 
CAFs, prevents the development and activation of T-cells, 
creating a disadvantageous tumor microenvironment for 
immune responses to take effect (118). Beyond the stroma, 
T-regulatory cells (T-regs) tend to cause inhibitory effects 
localized at lymph nodes implicated with PDAC, limiting the 
efficacy of cytotoxic T-cells. Additionally, tumor-associated 
macrophages (TAMs) have been shown to facilitate tumor 
growth while also preventing cytotoxic T-cells from localizing 
into areas of tumors. The presence of CD4+ and CD8+ T-cells 
(which has shown the correlation with improvements in 
overall patient survival) into the PDAC microenvironment 
and subsequently the tumor itself are significantly limited by 
such inhibitory factors. Such immunosuppressive mechanisms 
in the PDAC microenvironment present immense challenges 
to potential targeted therapies involving immunotherapeutic 
considerations (118). Some approaches that have been 
utilized with immunotherapies include monoclonal antibody 
therapies, targeting immunosuppressive cells, adoptive cell 
therapy/transfer (ACT), and vaccines.

Targeting immune-checkpoint proteins, such as 
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)  
with ipilimumab and tremelimumab, or programmed 
cell death protein-1 (PD-1) with nivolumab has shown 
disappointing results as monotherapies in PDAC patients 
(119-121). Regardless, there is some potential for the 
combination of immune checkpoint inhibitors with other 
treatments such as chemotherapy and radiotherapy. 
Ipilimumab combination with gemcitabine has facilitated 
promising survival outcomes in PDAC patients (122,123), 
while tremelimumab, similarly, with gemcitabine, 
has demonstrated potential efficacy with manageable  
toxicity (124). Additionally, pembrolizumab, a PD-1 
inhibitor, has shown considerable efficacy in combination 
with NPT + Gem (125). Another approach with immune 
checkpoint inhibitors in PDAC involves their administration 
with cancer vaccines, which has demonstrated some promise 
with improvements in greater T cell response (126).

Immunotherapy considerations present particular 
pertinence in tumors in which there are higher levels of 
microsatellite instability (MSI-H) facilitated by a defective 
DNA mismatch repair (dMMR) system, as such tumors 
are more vulnerable to and affected by immune system 
targeting. This is due to the increased prevalence of 
mutations in these cases, which in turn facilitates greater 
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amounts of antigen production, inflammatory response, 
and stimulation of T cells (127). In PDAC, however, the 
prevalence of MSI-H/dMMR is very low (<2%), indicating 
its limited applicability (128). Despite the rare occurrence of 
the MSI-H/dMMR phenotype in PDAC, it is recommended 
to test MSI-H and/or dMMR for advanced PDAC and treat 
patients who test positive with pembrolizumab as second-
line therapy (129,130). Based on the limited data available 
about MSI-H/dMMR frequency in PDAC and the potential 
of immune-checkpoint inhibitors in this subgroup, future 
studies to improve MSI-H/dMMR detection methods 
might benefit select PDAC patients from immunotherapy.

Monoclonal antibody therapeutics aim to target 
something predominately expressed in PDAC which will, 
in turn, cause not only greater levels of cytotoxicity towards 
cancer cells but also block immunosuppressive signaling 
to enhance the activity of cells implicated in anti-tumor 
efficacy (131). One such target, mesothelin (MSLN), is 
overexpressed in almost all PDAC cells and implicated in 
adverse patient outcomes (132). Targeting MSLN using the 
antibody amatuximab showed demonstrable safety but it did 
not show any significant improvement in patient outcomes 
(133,134). However, other monoclonal antibody therapy 
targets, such as KRAS mutations, could be promising in 
future studies (131).

Direct  target ing  of  immunosuppress ive  ce l l s , 
such as T-regs, by chemotherapeutic drugs, such as 
cyclophosphamide and gemcitabine, has been attempted 
in PDAC (135). Although diminishing the presence of 
immunosuppressive cells does not necessarily impede 
PDAC progression directly, such therapeutic agents can 
enhance the anti-tumor functioning and efficacy of other 
modalities, such as CD40 agonists (136).

Utilizing ACT as an immunotherapy modality also shows 
promise in PDAC, as genetically engineered T-cells through 
ACT methods enhance anti-tumor activity by supporting 
the functioning of CD4+ and CD8+ T-cells (131). However, 
some difficulties in ACT-based immunotherapy approaches 
are the high degree of patient-centered personalization with 
genetic engineering, requiring immense time and effort, as 
well as the emergence of unanticipated resistances despite 
initial effective results (63).

Cancer vaccines GVAX and CRS 207 are currently under 
investigation for PDAC. The GVAX cancer vaccine utilizes 
genetically modified PDAC cells, while CRS 207 uses a 
recombinant bacterial basis using the Listeria bacterial 
strain (63,131). These vaccines have demonstrated safety in 
their use and improved survival when used in combination 

with each other (137). However, such survival benefit was 
of a lesser degree relative to standard chemotherapeutic 
regimens, so further research is needed to determine if such 
efficacy implicated in cancer vaccines can demonstrate more 
promising survival improvements in PDAC.

Conclusions

The prognosis and survival rate for patients diagnosed with 
PDAC remain particularly dire. The American Cancer 
Society reports that while the 5-year survival rate for 
patients diagnosed with all PDAC stages is dismal at 9%, it 
reduces to only 2.9% for patients with a stage 4 diagnosis. 
Unfortunately, PDAC patients are typically diagnosed at a 
late-stage, and approximately 50% of these patients receive 
a stage 4 diagnosis. Improving survival rates and remission 
for these patients is essential. Cytotoxic chemotherapy 
regimens, the current clinical standard of care for PDAC, 
have led to moderate improvement in OS; however, 
PDAC remission or cure is still elusive. Targeted therapies 
for PDAC are therefore potentially promising avenues 
that can lead to improved efficacy with reduced toxicity. 
Targeting specific molecular targets or oncogenes involved 
in PDAC progression may also enable better assessment of 
treatment response. Along with KRAS pathway inhibitors, 
other targeted therapies that have been investigated for 
PDAC treatment include antiangiogenic, DNA repair, and 
traditional anti-stromal therapies. Future considerations 
regarding PDAC targeted therapy are direct KRAS 
inhibitors, novel anti-stromal therapies, small molecule 
multikinase inhibitors, nanoparticle-based therapies, and 
immunotherapies. Overall, more research is essential for 
the development of novel targeted therapies with reduced 
toxicities that can lead to improved survival rates in PDAC 
patients and possible remission of this intractable disease.
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