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Introduction

Small-for-gestational-age (SGA) infants, namely those 
born at a weight below the tenth percentile for gestational 
age, experience rapid weight gain during early childhood 
and have a high risk of developing obesity, cardiovascular 
diseases, and type 2 diabetes during adulthood (1-4). Such 
conditions may be caused by nutritional programming 
(5,6); however, the underlying mechanisms remain unclear. 
Obesity has been associated with premature birth and low 
birth weight (7-9). Breastfeeding during early life might 

prevent obesity in children and adults (10-12). Human 
milk contains hormones, growth factors, immunoglobulins, 
cytokines, and enzymes that support the growth and passive 
defenses of infants (13-15), in which leptin plays an essential 
role (16).

Leptin regulates body fat by inhibiting food intake and 
stimulating catabolic, autonomic, and neuroendocrine 
responses that direct nutrient stores away from fat 
compartments. Circulating leptin concentrations are closely 
correlated with body mass index (BMI) (17-19). Leptin 
in milk during the early stages of lactation may provide a 
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mechanism for thermoregulation, satiation, and homeostatic 
endocrine and metabolic control in the neonate (20,21). 
Marked decreases in leptin and insulin levels in the mature 
milk of mothers of SGA newborns contributed to rapid 
weight gain in these newborns (22); however, the exact 
mechanisms are unclear. To explore whether breast milk 
leptin may prevent lipid metabolism disorder in adulthood 
in SGA infants, we assessed the role of leptin through 
subcutaneous injections of a leptin antagonist in breast-fed 
SGA pups and oral supplementation of leptin in formula-
fed SGA pups. We subsequently evaluated the pups’ body 
weight (BW), BMI, and serum fat profiles at various time 
points after birth.

Methods

Animal model

The experimental protocol was approved by the Medical 
Animal Care & Welfare Committee of Shantou University 
Medical College (No. SUMC 2016-145). Three-month-old 
Sprague-Dawley rats were examined and quarantined for  
1 week. Mating was confirmed by verifying the presence of 
spermatozoa in vaginal smears. The animals were housed 
in a regulated environment with a constant temperature of  
25 ℃, 50% humidity, and a 12:12-h light-dark cycle. 
Pregnant rats were divided into two groups (n=10 per 
group), ad-libitum-fed group and restrictedly-fed group, 
who were fed ad libitum or restrictedly to 30% of regular 
food intake throughout pregnancy respectively. After birth, 
the BW, nose-to-anus length, and abdominal circumference 
(AC) of all pups were recorded. BMI was calculated by 
dividing BW (g) by nose-to-anus length (cm2). Pups 
with a birth weight within the 95% confidence interval 
limits for litter and sex in the ad-libitum-fed group were 
designated as appropriate for gestational age (AGA) rats. 
Pups in restrictedly-fed group weighed less than two 
standard deviations (SDs) below the mean AGA weight 
were designated as SGA rats. Because male and female rats 
differ in terms of weight, BMI, and leptin level, we selected 
female rats as the experimental subjects.

Groups and treatments

After birth, female SGA rats were randomly assigned to 
the following four groups: (I) SB: breast-fed SGA rats; (II) 
SF: formula-fed SGA rats; (III) SBLA: breast-fed SGA 
rats that received leptin antagonist injections (Triple Rat 

Recombinant; ProSpec, Israel); and (IV) SFL: formula-fed 
SGA rats that received orally fed leptin (PeproTech, USA). 
The leptin antagonist was dissolved in 0.4% NaHCO3 at 
a concentration of 1 mg/mL, and a dose of 2.5 μg/g was 
subcutaneously injected between 16:00 and 17:00 once daily 
from day 1 to day 20. The dosage used in the experiment 
was based on our pilot data in the previous study (23). 
Recombinant murine leptin (1 ng/μL) was dissolved in 
water. From day 1 to day 20 of life, during the first 2 h of 
the light cycle, 20 μL of the recombinant murine leptin 
solution was administered orally to the pups by using a 
pipette and the amount was as follows: 1.0, 2.0, 3.0, 4.0, 5.0, 
6.3, 7.5, 8.8, 10.0, 11.3, 15.6, 17.2, 18.8, 20.3, 21.9, 23.5, 
25.0, 26.6, 39.4, and 43.8 ng, respectively (24). This leptin 
dosage was five times the amount of daily leptin ingested 
from maternal milk (25).

Breast-fed AGA pups were designated as AB group. The 
rats in breast-fed groups, namely AB, SB, and SBLA, were 
fed by the mother rats. The rats in formula-fed groups, 
namely SF and SFL, were separated from the mother rats 
and artificially fed through a thin tube. After day 20, all 
rats were fed rat chow. The composition of formula milk 
was close to that of breast milk. Standard laboratory chow 
comprising 6% fat, 21% protein, and 55% carbohydrates 
with an energy content of 3.66 kcal/g (Laboratory Animal 
Center of Shantou University Medical College) was 
provided. BW determined food consumption from day 21  
to day 120 of life. No significant differences were observed 
among the study groups at any age (P>0.05 for all 
comparisons; data not shown).

Enzyme-linked immunosorbent assay (ELISA) analysis

On days 18, 30, 90, and 120 of life, the blood was drawn 
by puncturing the retro-orbital plexus under light ether 
anesthesia after overnight fasting (10 h) to assess serum 
leptin, total cholesterol (TC), and triglyceride (TG) levels. 
Blood samples were centrifuged at 2,500 ×g for 15 min at  
4 ℃. The entire serum was immediately frozen at −80 ℃ 
until subsequent analysis. Leptin levels were measured using 
a rat/mouse leptin ELISA kit (Santa Cruz, USA). TC and 
TG levels were measured using a rat/mouse cholesterol/TG 
ELISA kit (Santa Cruz, USA).

Statistical analysis

Results were analyzed by conducting analyses of variance 
(ANOVAs). For all analyses, the level of significance was set 
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at P<0.05. All values are expressed herein as mean ± SD.

Results

As showed in Figure 1, compared with the breast-fed AGA 
rats, the breast-fed SGA rats had lower weight on days 90 
and 120 (P<0.05 for all the comparisons), but similar BMI 
on every time point (P>0.05 for all the comparisons). SGA 

rats had higher leptin level on every time point (P<0.05 
for all the comparisons). Referring to the fat profiles, SGA 
rats had lower TG level on days 18 and 30 (P<0.05 for all 
the comparisons), but similar TG level on days 90 and 120 
(P>0.05 for all the comparisons) compared with the AGA 
rats. SGA rats had higher TC level on days 30, 90, but 
lower TC level on day 120 compared with the AGA rats 
(P<0.05 for all the comparisons). Although SGA rats were 

Figure 1 Comparisons of BW (A), AC (B), BMI (C), serum leptin (D), TC (E), and TG (F) levels between breastfed female AGA and 
SGA rats. Results are expressed as mean ± SD (n=8 per group). *, P<0.05 for comparisons between the AB and SB groups, as determined 
using ANOVA. BW, body weight; AC, abdominal circumference; BMI, body mass index; TC, total cholesterol; TG, triglyceride; AGA, 
appropriate-for-gestational-age; SGA, small for gestational age; AB, breast-fed AGA pups; SB, breast-fed SGA rats; SD, standard deviation.
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smaller than the AGA rats, they were prone to get lipid 
metabolism disorder when growing up.

As showed in Figure 2, the weight and BMI of the 
formula-fed SGA rats were lower than those of the 
breast-fed SGA rats on days 18 and 30 (P<0.05 for all the 
comparisons), but were similar on days 90 and 120 (P>0.05 
for all the comparisons). Compared with breastfed SGA 
rats, formula-fed SGA rats had lower leptin level on days 
18, 90, and 120 and higher TC and TG levels on day 120 

(P<0.05 for all the comparisons). Hyperlipidemia was 
present in the adult SGA rats that were fed with formula 
milk during the neonatal period. 

As the leptin level was low in formula-fed SGA 
rats, which might be related to the hyperlipidemia, we 
investigated the effect of leptin in breast milk by supplying 
leptin to formula-fed rats or injection of leptin antagonist 
to breast-fed rats. As leptin was added to the formula milk, 
the leptin-added-formula-fed rats, which were named 
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Figure 2 Comparisons of BW (A), AC (B), BMI (C), serum leptin (D), TC (E), and TG (F) levels between formula-fed and breastfed female 
SGA rats. Results are expressed as mean ± SD (n=8 per group). *, P<0.05 for comparisons between the SF and SB groups, as determined 
using ANOVA. BW, body weight; BMI, body mass index; TC, total cholesterol; TG, triglyceride; SGA, small for gestational age; SF, 
formula-fed SGA rats; SB, breast-fed SGA rats; SD, standard deviation.
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SFL group, had higher leptin levels and lowered BMI, 
TC, and TG levels on days 90 and 120 compared with the 
formula-fed rats (P<0.05 for all comparisons; Figure 3). 
Otherwise, after leptin antagonist was injected, the rats in 
SBLA group had lower leptin level and higher BMI, TC, 
and TG levels compared with the breast-fed SGA rats on 
days 90 and 120 (P<0.05 for all comparisons; Figure 4). The 
observed hyperlipidemia in formula-fed rats was improved 

as leptin was added to the milk; otherwise, the prevalence of 
hyperlipidemia was increased as the effect of leptin in breast 
milk was inhibited.

Discussion

In this study, we developed a model of undernutrition in 
pregnant rats by restricting 30% of ad libitum consumption 

Figure 3 Comparisons of BW (A), AC (B), BMI (C), serum leptin (D), TC (E), and TG (F) levels between formula-fed SGA and formula-
fed SGA + leptin female rats. Results are expressed as mean ± SD (n=8 per group). *, P<0.05 for comparisons between the SF and SFL 
groups, as determined using ANOVA. BW, body weight; BMI, body mass index; TC, total cholesterol; TG, triglyceride; SGA, small for 
gestational age; SF, formula-fed SGA rats; SFL, formula-fed SGA rats that received orally fed leptin; SD, standard deviation.
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throughout gestation; this led to the delivery of SGA 
infants, similar to other studies (26,27). The nutritional 
status of the mother during pregnancy or that of the infant 
during the first year of life can exert long-term effects on 
metabolism in adulthood (28). These effects are referred to 
as programming. Undernourishment during development 
can cause an adaptive response that programs offspring 
to prioritize organ growth and increases the metabolic 

efficiency in preparation for an environment with sparse 
resources; this is the core theory of the thrifty phenotype 
hypothesis. Programming becomes detrimental when 
postnatal nutrition is more plentiful than prenatal nutrition; 
offspring exhibit rapid catch-up growth and subsequent 
obesity, which is a critical risk factor for noncommunicable 
diseases in adulthood, including metabolic syndrome 
and coronary heart disease (29). Epidemiological studies 
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Figure 4 Comparisons of BW (A), AC (B), BMI (C), serum leptin (D), TC (E), and TG (F) levels between breastfed SGA and breastfed 
SGA + leptin antagonist female rats. Results are expressed as mean ± SD (n=8 per group). *, P<0.05 for comparisons between the SB and 
SBLA groups, as determined using ANOVA. BW, body weight; BMI, body mass index; TC, total cholesterol; TG, triglyceride; SGA, small 
for gestational age; SB, breast-fed SGA rats; SBLA, breast-fed SGA rats that received leptin antagonist injections; SD, standard deviation.
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in humans and controlled animal studies have revealed 
that nutritional programming in early periods of life is 
a phenomenon that affects metabolic and physiological 
functions throughout life and can even affect the next 
generation (30,31). In our study, the observed BW, AC, 
and BMI levels in SGA female rats were lower than those 
in AGA rats during the neonatal period; however, the adult 
SGA female rats developed a high BMI and hyperlipidemia, 
which closely resembled clinical and metabolic abnormalities 
observed in humans born with a low weight.

The regulation of nutritional imprinting on hormonal 
and epigenetic mechanisms is complimentary. The 
central part, including the hypothalamic-pituitary-adrenal  
axis (32) and growth hormone-insulin-like growth factor 
axis (33), as well as peripheral tissue such as adipose  
tissue (34), may play a crucial role in regulation induced by 
nutritional programming. In these complex systems, leptin 
is critical, particularly in the process of lipid metabolism (35). 
Leptin is produced primarily in fat cells but is also produced 
in other organs and tissues such as the placenta and breast 
milk tissues. In our study, we found that within 18 days of 
birth, the leptin levels were higher in the breastfed SGA 
group than in the formula-fed SGA group, but the levels 
were similar in these two groups after the weaning period, 
thereby indicating that breast milk is the primary source 
of leptin during lactation. After day 18 of life, the number 
and volume of fat cells began to gradually increase, thereby 
enhancing the ability of fat cells to synthesize and secrete 
leptin. In this study, the peak leptin level was attained on 
day 90, and the levels gradually decreased after that. These 
results are similar to those of another study that showed 
that the leptin level was closely related to the amount of 
body fat tissue present and an increase in BW (36).

A comparison between breastfed female SGA and 
AGA rats revealed that there were higher TC levels, 
but the TG level was lower on days 30 and 90 in the 
SB group, indicating that female SGA rats experience 
hypercholesterolemia at the juvenile stage. Compared with 
the breastfed SGA group, formula-fed SGA rats had a lower 
leptin level and higher TC and TG levels. After leptin was 
added to the formula, the SFL group exhibited lower BMI, 
TC, and TG levels than the formula-fed SGA group did. 
Leptin deficiency was hypothesized to disrupt the lipid 
metabolism-regulating effect, leading to hyperlipidemia 
in the formula-fed female SGA group. To verify this 
hypothesis, the SBLA group, in which the rats were fed the 
leptin antagonist to inhibit the effect of leptin, was analyzed; 
higher BMI, TC, and TG levels were observed in this 

group compared with the SB group. These results indicate 
that breastfeeding may prevent obesity and hyperlipidemia 
during adulthood in SGA female rats because of the leptin 
in breast milk. Another study obtained a similar result and 
determined that peripheral leptin administration reduced 
BW under normal food intake (37). Leptin can influence 
the proliferation and differentiation of infant adipocytes and 
can help prevent obesity in later life.

In summary, breast milk is the primary source of leptin 
during lactation. Leptin plays a vital role in preventing 
obesity and hyperlipidemia during adulthood in SGA rats. 
However, the exact underlying mechanisms require further 
investigation.
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